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Abstract approved:

Dr. John W. Leonard

A three dimensional finite element analeis is developed which
is capable of simulating the coupled static and dynamic behavior of
compliant ocean structures. Nonlinearities which result from large-
deflection, reduced or zero stiffness in compression, and the noncon-
servative fluid loading are considered. The spatial variation of
fluidiloading is also adaressed.

The structures are assumed to be in the Morison flow regime.
Linear wave theory is used and multidirectional seas may be simulated.
A current profile which varies in magnitude and direction with depth
may be specified. Concentrated masses and loads as well as foundation
properties may also be modelled. The problem is fofmulated in updated
Lagrangian coordinat;s and a residual feedback incremental-iterative
solution scheme i$ used. Viscous relaxation is used to start the
static solution of problems with low initial stiffnesses. The dynamic

solution is performed in the time domain and uses the Newmark integra-

tion scheme.



ik

7

L,

ey

E 22

3

Tmer

3

-

™

i

i A

i |

Wi

1]

k

&

i

g

&

L

The beam-column eleﬁént is a two-noded subparaﬁetric element with
geometric stiffmess. The cable elément‘is a two-noded straight iso-
parametric element. Consistent mass matrices are developed for both
elements. The directionality of the hydrodynamic added mass is
accounted for ‘as is the discontinuity of the mass density for surface
piercing elements. A numerical scheme for calculating the equivalent
nodal loads due to an arbitra:y load profile between nodes is formu-
lated.

Numerical examples are presented to validate the solution tech-
nique and to demonstrate its use on three types of compliant ocean
structures: 1) the articulated tower, 2) the guyed tower, and 3) the
tension leg platform. Results from the guyed tower example indicate
that a decoupled analysis vields conservative peak guy tension and
deck displacement values. However the phase and form of the guy ten-
sion trace for the coupled analysis is significantly different from

the decoupled solution.
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NOTATION

Latin Symbols

A Cross—sectional Area

a; Constants in Newmark Integration Method
Bij Strain-Displacement Relation
Cij Daﬁping Matrix
Ca Added Mass Coefficient
CD DragVCoefficient
Cr Inertia Coefficient
c Wave Phase Velocity
d Water Depth
D Cylinder Diameter or Drag Width or Dynamic Magnification
: " Factor
Dij Stress-Strain Relation
E Elastic Modulus
Fy Nodal Loads
g Acceleration of Gravity
K. Keulegan Carpenter Number
Kij Stiffness Matrix
ég k Wave Number
. ,Mij Mass Matrix
Nij Element Shape Function Matrix
Pi Non-nodal Inertia Force
q3 Structure Displacement Vector
Ry Internal Nodal load Vector
R Reynolds Number




NOTATION (Continued)

T Period of Harmonic Oscillation, Cable Tension

t Time

uy Water Particle Displacement Due to Waves
Vs o Water Particle Displacement Due to Current
Wy Distributed Non-nodal Load Intensity

X4 Cartesian Coordinates (i = 1,2,3)
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Greek Symbols

o Angle Between Wave and Current Directions Newmark
Integration Parameter

Fdtis
doil
w

Frequency Ratio. Rigid Body Rotation Angle. Viscous
Relaxation Damping Factor

g
1%3 A Small Change Operator
n § ©  Virtual Operator
B ‘ '
e € Strain
z Newmark Integration Parameter
© Azimuth for Wave or Current
E C o Viscous Relaxation Decrement Factor
v Poissons Ratio, Kinematic Viscosity
E = T 31415 ceeenn
Ej Element Displacement Between Nodes
p Mass Density of Water
pij Mass Density Matrix
o} Stress
™
i
L] b Wave Potential Function

w Harmonic Frequency
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Superscripts

Left lower case:

Right lower case:

Right upper case:

Subscripts

Right lower case:

Time of the configuration in which the
quantity occurs

Iteration number

Subspecies identifiers (e.g. FL is the nodal
force, F, due to inertia, superscript I

i, j, k, 1 and numeric
Indices of a vector or matrix

All others are subspecies identifiers (e.g.

w, is natural frequency)
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COUPLED RESPONSE OF COMPLIANT OFFSHORE PLATFORMS
1.0 Introductibn

As long as there is a demand for petr&leum products and by-
products, there will be a need to exploit the world's undersea
petroléum and natural gaé deposits. 1In April of 1982 some 22 per-
cent of the world oil production was pumped from wellheads. sur-—
rounded by water (Ellers, 1982). As knéwn reserves from wells
located on dry land are depleted, this percentage will increase
necessitating production from wells in ever increasing water depths
and steadily more severe environments.

The economic production of petroleum in deep water requires
innovative structures which often test the limits of existing
design technology. The compliant production platforms are a large
class of deepwater structures which have challenged designers for
years. The combination of structural intricacy and load complexity
which must be dealt with often obscures a rational design
approach. Since they are compliant, these structures mist be
designed dynamically. Also, since they are exposed to loads which
vary in a nonlinear way and are themselves mechanisms which behave
in a nonlinear manner, their analysis is highly complex. Simpli-
fied design methods are required by practical comnsiderations, but
the method of simplification and its range of validity may not be
entirely lucid. In this study a finite element model is developed

which is capable of dealing with nonlinear dynamic prbblems of
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compliant platforms. This model can be used to test the limits of

validity of some of the commonly made design simplifications.

1.1 Compliant Tower Concept

As water depths approach 300 metere, fixed offshore stfuctureé
which rely upon bending and shear to transmit loads to the seafloor
becoﬁe inefficient forms. The large overturning moments of these
structures when they are subjected to wave action require massive
foundations and the increased natural periods of the properly
designed structures approach the range of wave periods which con-
tains significant energy. To safely build such structures in
increasing depths requires enormous designé and,’ae a result, enor-
mous costs.

To make drilling and production economicelly feasible in deep
water, designers have developed several different structural con-

cepts which rely upon compliance to reduce loading transmitted to

'thevanchorage and which use anchorages different from the canti-

lever beam—column concept of the traditional fixed structure.

A compliant ocean structure is ome which mdves iatefally
significant distances wben subject to wave and wind loadings. It
relies upon its dynamic softness to reduce maximum transmitted
anchorage loads, unlike the fixed structure where structural velo-
cities and accelerations are small and the time varying wind and
wave loads may be treated as a time series of static problems, the
compliant structure has significant kinematics and the role of

structural mass, added mass, and damping must be considered. This



is best illustrated by Figure 1.1-1 (after Nair and Duval, 1982)
which is a plot of the dynamic amplification factor versus fre-
quency ratio for a single degree of freedom spring-mass—damper
system. The dynamic amplification factor, D, is the ratio of maxi-
mum dynamic deflection of a system to the static deflection under a
static load of idenﬁical amplitude. The frequency ratio, 8, is the
ratio of the frequency of the dynamic load to the natural frequency
of oscillation of the system. A rigid structure is designed so
that its natural periods yield low g ratios so that its response
may be treated as static. A compliant structure is designed so
that the reduced motion as high values of B is obtained.

As water depth increases, the frequency ratio g for a fixed
oéeaﬁ structure is shifted toward significant dynamié mangnifica—
tion. Region I of Figure 1.1-1 represents shallow water fixed
structures while Region II represents deep water fixed struc-—
tures. As water depth increases past the 450 meter depth, the
dynamic magnification of practical forms of a fixed structure may
be found in Region III, where dynamic loads are extreme. Compliant
structures lie in Region IV, a region of attenuated dynamic res-
ponse. A tremendous design advantage is gained in this region, but
‘the penalty is that the design must now be a dynamic one.

In the ocean the loading frequency range due to waves is
large, ranging from capillary wave frequencies of as much as 100 Hz
to tidal and transtidal waves with frequencies of the order of 10—5

to 1078 Hz. (SPM, 1977). Fortunately, only a narrow band of wave
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frequencies possesé the energy to significantly affect offshore
structures. The waves in this band are the gravity waves with
periods of 5 to 25 seconds (0.2 to 0.04 Hz), and one must try to
design structures with natural frequencies outside this range. The
period distribution, or spectrum, of this wave energy is shown in
Figure 1.1-2 (Eliers, 1982) for two different geographical regions;
the Gulf of Mexico and the North Sea. The significant wave height
is the average height of the highest one-third waves in a given sea
state and is an indicator of sea surface roughness. Also shown in
the figure are the relative locations of structure periods for both

fixed and compliant offshore structures.

1.2 Review of Compliant Tower Concepts and Previous Research Work

Ocean engineers have used structural compliance as a means to
reduce environmental loads on structures for many years in the case'
of single point mooring systems (SPMs). With the success of these
simple systems, it was a natural development to éxtrapolate the
technology to larger, more complex structures. When increased
water depths made traditional fixed structures economically unat-—
tractive, the fundamental ideas of the SPM were applied on a larger
scale to offshore oil production platforms for ocean depths greater
than about 600 ft.

Compliant structure concepts may be classified in one of four
categories:

1. Articulated towers (ATs);

2. Guyed towers (GTs);
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Tension leg platforms (TLPs), also known as tethered

buoyant platforms (TBPs); and

Floating production facilities (FPFs)

Each reduces maximum stresses by complying (moving) with the

dynamic loads as they act on the structure and, hence, each expe-

riences motions that are large compared to those of fixed struc-

tures.

The concepts differ mainly in the means by which the

loadings are transmitted to the seabed and in the form of the

anchorage to the sea floor. They all resemble inverted pendulums,

with excess buoyancy replacing gravity loads.

The relative advantages of a compliant structure over a fixed-

base structure include:

1'

Reduced‘stfucture to connect platform to sea floor for
large water depths;

Lateral structural response at periods longer, and verti-
cal response at periods shorter than the predominant inci-
dent wave periods;

They are potentially more mobile and reusable in new
fields;

Increased fabrication and outfitting in comnstruction yards
reduces weather-sensitive offshore work periods;

Separate installation of foundations and/or installation
over previously drilled wells; and

Enhanced "tunability"” of periods of the system for a par-

ticular site,
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Some of the relative disadvantages or difficulties of

compliant structures relative to fixed-based structures include:

1. Structure must be designed to resist an enlarged spectrum

of wave loads due to enhanced responses at both low and

high frequencies;

i

e
ok

N

:

Increased concern about nonlinearities and stability of

dynamic motion;

£ ’j

3, Crew discomfort during motions;

Foundation and riser connection design;

Ea
.

5, Possible greater sensitivity to fatigue effects; and

6. Llack of experience to date with respect to design and in-

-~ service behavior.

1.2.1 Articulated Towers (ATs)

The articulated tower consists of a vertical column to which
E‘ buoyancy has been attached near the water surface and to which
: ballast is usually added near the bottom. The tower is connected

to the sea floor through an articulated hinge joint to a base which

may be of either piled or gravity type. The articulated hinge
E: generally is either a ball and socket or a Cardan type of joint.

‘The tower itself may be either a tubular column or a trussed steel

latticework.

The structure is dynamically tuned to have a natural period

removed from periods of high wave energy, usually longer than the

wind-wave period range. This is accomplished by adjusting the size

and location of buoyancy and ballast on the tower. In the process
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of tuning, consideration is also given to hinge loads, for it is
desirable to keep the loads to a minimum from both a foundation
design and hinge design viewpoint.

The articulated tower was among the first of the more elab-
orate compliant designs to see ocean service. It serves as the
first link between the sea-keeping analysis of the free body,
traditionally the domain of the naval architect, and the environ-
mental load analysis of the permanent structure, the traditional
task of the ocean engineer. The scale of the structure in its
region of applicability warrants a more elaborate analysis than is
commonly the case for a SPM.

Articulated towers are presently being used as single point
mooring and loading termiﬁals, control‘toﬁer and flare structures
and, coupled to a resident tanker, as early production facilities
in the North Sea and in the Atlantic Ocean. They also have been
studied for use as production platforms in marginal fields where
reserve size does not warrant large facilities. The structures are
typically designed for water deptﬁs of 200 to 600 ft but concepté
have been developed for water depths in excess of 1200 ft., Also
recently proposed are facilities which consist of multiple arti-
culated columns connected in parallelogram fashion to a foundation
and to a deck structure. Such an arrangement permits larger deck
loads and virtually eliminates roll and pitch motions of the deck.

Both in the United States (Chakrabarti and Cotter, 1980) and

in Great Britain (Kirk and Jain, 1977, 1981) the dynamics of these
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structures in two and three dimensions have been thoroughly
explored. Xirk and Jain employed a time step technique to solve

the nonlinear differential equation of motion using linear wave

‘theory and noncollinear current. Chakrabarti and Cotter's work

initially dealt with a closed form solution of the two-dimensional

problem but was later extended to include transverse tower

motion. More recently, Kirk and Jain have extended their work to
include the analysis of a double articulated structure in noncol-

linear wave and current,

1.2.2 Guyed Towers (GTs)

The guyed t@wer is a rectangular lattice column connected to
the sea floor by either a piled foundation or a "spud can” gravity
type foundation., The tower is long and slender and depends upon a
group of catenary guy lines for lateral stability in resiéting wave
and wind loads. Essentially it is an extension of the guyed radio
tower to the water environment. An important distinctive feature
of the guys is the clump weights which are attached to the cable
guys and whicﬁ initially are at rest on‘the sea floor some distance
from both the tower and the cable anchors.

The guyed tower is designed, as are the other compliant struc-
tures, fo have a natural period longer than the wave periods of
significant energy. This is accomplished largely by selection of
number of guy lines and control of guy line tension. Since it is
desired from operating requirements to have a felatively stiff

system for normal sea conditions the tower is tensioned to be
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fairly rigid; In thése éircumstanceé the clump weights are sized
to remain on the bottom. 1In survival sea conditions, it is desir-
able to allow the system to become more compliant. This occurs
when the clump weights leave the bottom. Not only does the guy
system become softer but also, since the natural period is on the
high end of the wave periods, the natural peridd of the structure
increases and the dynamic amplification factor for the driving wave
frequencies decreases.

’A‘guyed tower, the concept of which is attributed to L.D.

Finn, was first constructed as a one-fifth scale instrumented model

_test structure in 293 feet of water in the Gulf of Mexico in 1978

(Finn and Young, 1978). Results of the model test confirmed the
adequacy of Finn's original linearized analysis (Finﬁ, 1976) ofk
this complex structure as a means of obtaining peak loads. How—
ever, test data showed that such a simplified analysis would not
adequately describe the kinematic and dynamic response of the
structure as a function of time, an important concern in fatigue
analysis. Recent work (Mes, 1981, 1982) has begun to consider the
nonlinearities of the combined analysis problem of tower and guys
in a hydrodynamic loading environment. A nonlinear stochastic
analysis of a guyed tower using spring idealizations for guys has
been performed using the Fokker-Planck equation (Smith et al.,
1980). Currently, simplified tower-guy models are being developed
that are suitable for parametric study (Triantafyllou et al.,

1982).
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The only guyed tower in service to date is the above-mentioned
test structure installed in the Gulf of Mexico. Plans are under
way, however, for installation of a more than 1000 foot tower in

the Gulf of Mexico in 1983.

1.2.3 Tension Leg Platforms (TLPs)

The tension leg platform (TLP) is essentially a semisubmer-
sible vessel which is moored to the sea floor by a number of pre-
tensioned tendons. The tendons are connected at the sea floor to a
template which is piled in place. It is significant to note that
unlike the case of normal pile foundations, the piles experience
tension rather than compression. The tendons in early concepts
were often splayed out from the platform at significant batter but
model testing showed that such an arrangement led to large dynamic
loads in individual tethers, and now almost all TLPs have vertical
tendons which have larger pretension, a smaller dynamic load and a
net reduction in peak loading. Like the articulated towers, these
structures are free to move in surge and sway. They also have a
more limited freedom in yaw, while roll, pitch, and heave are
severely restricted by the pretensioned tendons. The structure is
sized by adjusting tendon tension and platform buoyancy so that
requirements concerning surge, sway, and yaw periods and "setdown”,
are satisfied. Setdown, the change in water line location on the
buoyancy chambers as the platform moves to maximum surge and’sway,
must not be so large as to permit waves to strike the deck struc-

ture. The natural periods of the structure in surge, sway and yaw
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must be greater than the wave priods of significant energy. The
heave, roll and pitch natural periods, on the other hand, being

much shorter, must be less than the significant wave energy

periods. Further, amplitudes of motion must be sufficiently small

to prevent flexural yielding of the drilling risers which connect
the platform to fhe subsea completion template,

A tension leg platform (TLP), also referred to as a tethered
buoyant platform (TBP), first saw ocean sefvice with the field
testing of the Triton platform in 1974 (MacDonald, 1974 and Pauling
and Hortom, 1970). The dynamics of the TLP have been considered
(Rainey, 1978, 1980) in terms of a Mathieu-Hill type noniinear
differential equation of motion. This equation resulted from the
nonlinear restoring force of the TLP structural system. The former
of these two papers is believed to be the first to demonstrate the
possibility of the existence of both subharmonic and éuperharmonic
instabilities of the tower motion. Much subsequent literature
déals with this problem (Albrecht et al., 1978; DeZoysa, 1978;
McIver, 1981; Yoshida et al., 1981; and Jefferys and Patel, 1981).

While many investigators were examining the nonlinear
instabilities of the TLP; others (Natvig and Pendered, 1980; and
Ashford and Wood, 1978) were examining optimized computational
techniques for both linearized frequency-domain analyses and time-
domain solutions of the equations of motion. Three-dimensional
potential theory has been used in the analysis of the motion of the
TLP in irregular seas (Gie and de Boom, 1981). Their work reveals

the particular effect of unsteady drift force on the structure.
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Presently no TLPs are in service but one is scheduled to be in
service in the Hutton field of the North Sea in 1984 (Tetlow and
leece, 1982; Mercier et al., 1980, 1982; Mercier and Marshall,
1981; and Mercier, 1982). Llocated at a site with 480 feet water
depth, it will serve as a test structure for comparison to fixed
structures, and also for extrapolation of the concept to deeper

water.

1.2.4 TFloating Production Facilities (FPFs)

Floating production facilities (FPFs) are similar to TLPs in
that they both use a semisubmersible type of vessel as a plat-
form. They differ by having a catenary-type of anchoring syetem
rather than the tendons of‘the TLP. As such, the structure is free
to move with relatively large amplitudes in the roll-pitch-heave
' ﬁodes compared to the TLP., It is required that natural periods in
all modes be removed from significant wave energy periods. Usually
the periods are desired to be longer than the wave periods. Guys
are selected and sized to limit surge and sway to amplitudes accep-
table to the riser cluster.

FPFs have been in service since 1975 in fhe North Sea. Ten

such units are presently in operation worldwide.

1.2.5 Comparison
Although selection of a structure is often dependent upon
stringent site-specific conditions as related to the mechanical

particulars of individual concepts, it is worthwhile to compare the
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relative advantages and limitations of the various compliant struc-
tures.

In terms of relative payload capabilities for a fixed water
depth, the TLP may be ranked as béing capable of carrying the
heaviest deck loads. It is followed in order by the FPF, the GT,
and lastly the AT (lewis, 1982). Water depth range is listed for
the FPF as 250 to 6000 ft, for the TLP as 500 to 3000 ft and for
the GT as’6OO to 2000 ft (lewis, 1982); The estimated depth range
for the AT lies in the 200 to 1200 ft range and is limited by
natural period. It is difficult to obtain a soft system in shallow
water and the buoyancy requirements for a system stiff enough to
limit deck accelerations are prohibitive in deeper waters. The TLP
shallow limit is restricted by the pérmissibie angular offset of
the riser cluster and the deeb limit by the natural period of the
structure in heave. The GT is limited in shallow water by angular
deviation of the tower structure at the base, and in deep water by
the first natural mode of the tower in bending. The FPF has no
such mechanical limitations but is limited solely by economic
practicality.

Both the TLP and FPF offer excellént resistance to seismic
loadings because of their essentially free floating nature,
although some care must be exercised with regard to the heave
natural frequencies of the TLP. The GT and AT have less of an
advantage in this regard, with the vertical natural frequency
approaching earthquake spectrum frequencies as the léngth of tower

increases with water depth.
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Total structure weight naturally increases with water depth
but it increases at different rates for each structure (Lewis,
1982). The AT weight increases approximately parabolically with
depth due to increased buoyancy requirements. The GT weight
increases logarithmically due mainly to flexural stiffness restric-
tions. Both the TLP and FPF have a proportional weight increase
with depth (Lewis, 1982) since both concepts require reasonably
simple modifications to the tendons or guys to extend the floating
structure to deeper water.

The last comparison to be made here is one of operabiiity.
These are, after all, work platforms. The major advantages of the
GT and AT are that both provide continucus riser support from’the
sea floor and both allow deck-level completion of wells, techniques
already developed and proven on fixed structures.

The TLPs and FPFs requife subsea completion, a relatively new
procedure, and laterally unsupported risers which are held in ten-
sion to prevent buckling. Both structures require riser string
tensions which permit vertical motion of the platform to take place
without significant fluctuation in riser tension. The FPF, with
significantly more heave émplitude than the TLP, requires a much
larger tensioning system which adds considerable equipment cost and

loading to the deck structure.

1.3 Objectives of the Work
The objective of this work is to develop a computer tool suit-

able for the nonlinear coupled analysis of a compliant guy-



b

il

3

17

structure system in an ocean environmenf; There exists in the
literature a significant volume of work dealing with separate com-
ponents of the compliant ocean structure. The dynamic response of
the platform, generally governed by the Morison equation, with
cables modelled as springs has been treated by a variety of authors
(Penzien, 1976; Taudin, 1978; Fish, Dean, and Heaf, 1980; Fish and
Raine?, 1979). Likewise, many investigators (Amsari, 1978; Suhara,
et al., 1981; Peyrot, 1980; De Zoysa, 1978; Wilhelmy, et al., 1981)
have contributed to the analysis of catenary moorings using either
finite element or finite difference approaches.

Generally the motions of the guy-structure system are deter-
mined in a decoupled analysis procedure. In this procedure, the
guys are first represented by springs with load deflection char-
acteristics similar to those of the static guy system. The plat-—
form is then dynamically analysed using these spring representa-
tions. The resulting motions of the platform analysis are then
applied to a dynamic model of the guy cluster and the resulting
loads in the cable to tower connection are compared to those of the
spring-platform analysis to see if they compare reasonably.

There is a subtle problem in this form of analysis that is
disconcerting. By performing this solution procedure, it is pre-
supposed that the procedure is valid and the results are forced to
fit an assumed character. Since the general éoupled dynamic pro-
blem involves numerous nonlinearities, the normal intuitive feel

for the proper response is quickly lost and it is difficult to
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assess the Validity of the assumpﬁions of decoupled analysis in a
qualitative manner.

Model guy tests and theoretical guy calculations indicate thét
there is a need for a coupled analysis which incorporates the non-
linear behavior of the total system (Mes, 1981). VOne main reason

is that theoretical work indicates that there is hysteretic energy

~dissipation in the guy system. Certainly hydrodynamic drag loads

on the cables are energy dissipatofs, and they are spatially and
directionally dependent. 1In a wave or current field, not only are
the drag loads dependent upon the spatial orientation of the cable
but also they are dependent upon the directionality of the wave or
current, drag loads being greater when moving against the wave or
current than when moving with it.

A nonlinear coupled analysis program which can deal with
phenomena such as the spatiélly and directionally dependent drag
férces will provide a means to quantitatively assess the validity
of decoupling assumptions and also the range of that validity. It
is doﬁbtful that the nonlinear coupled analysis will supplént more
simplified procedures since such analyses are usually by nature too
expensive and time consuming for all but perhaps the final phases
of design. They do, however, provide insight to the complicated
physical phenomena and with judicious model selection, such an
analysis will contribute greatly to physical understandihg of a

complex problem and to design confidence.
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1.4 Scope of the Work

The computer program developed in this work is a nonlinear
finite element program capable of solving large displacement pro-
blems, both statically and dynamically in the time domain. The
solution procedure is formulated using the updated Lagrangrian
coordinate reference frame. The algorithm used is a residual feed-
back scheme which is an incremental iterative technique in which
the load may be applied in steps with a full Newton-Raphson itera-
tion to convergence at each step. The linearized matrix equationms
are solved using Gauss elimination. Static problems with low
initial stiffness are considered using a viscous relaxation proce-
dure incorporated into the residual feedback algorithm. An implic-
it scheme, Newmark's method, is used for the numerical integration
in time.

The particular elements developed include a cubic subparame-
tric beam element with geometric stiffness, a two node isopara-
metric cable element and a foundation element. The beam element
has a consistenﬁ mass matrix which is adjusted for added mass over
all, or any portion, of the element. The cable element is a
straight element also with a consistent mass matrix. The cable
element mass matrix is fotmed assuming the cable is always sub-
merged. The foundation element incorporates viscous damping in
addition to spring stiffness in the six nodal degreés‘of freedom.

‘All element materials are assumed to be linearly elastic.
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Hydrédynamic loads are calculated from linear wave theory
qsing a form of the Morison equatin modified to account for element
orientation and element velocities and accelerations. Irregular
waves may be simulated by a series of wave components of varying
period, height, phase, and direction. Current is specified as a
current profile which may vary‘in magnitude and direction with
depth.

Additional loadings may be specified as concentrated masses or
concentrated forces. The concentrated masses participate in the
dynamic solution and are assigned weight. The concentrated loads
are static,

No interference, proximity or diffraction effects of the flow
are considered. Values of drag and inertia coefficiénts are speéi—
fied at problem outset and remain constant. Wind and seismic
dynamic loads are not considered.

Chapter 2 includes a discussion of the concepts and assump-
tions which form the basis of the mathematical description of the
physical problem; Chapter 3‘gives the derivation of the solution
algorithms, of the element formulations, and of the load calcula-
tion scheme. Chapter 4 contains a selection of program validation
problems and sample problems of compliant structures. Chapter 5 is

a summary of the results with recommendations for additional work.
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2.0 Basic Concepts and Assumptions

The compliant structure is, in general, a complex one. Com-
posed of many different elements, chain, cable, rope, tubulars,
structural sections; plate, etc., it presents a more than modest
challenge for the designer. In additional to the structural intri-
cacies, the loadings are a complex interaction of gravity, buoy-
ancy, waves, current, wind and seismic activity. In order to deal
practically with either the design or analysis problem it is neces-
sary to make certain simplifying assumptions. It is the purpose of
this chapter to set the ground rules and assumptions that were made

concerning the physical idealization (see Figure 2.0-1 for a

.general definition sketch). .

The mathematical derivations for the finite element model are
given in Chapter 3. Both static and dynamic solution algorithms as
well as the individual element stiffness and mass matrices are
developed there. The method of distributed load discretization is

also explained.

2.1 Structure
2.1.1 Beam—column‘Element

The primary structural components of the compliant offshore
platform are the beam—column elements which form the rigid support
frame for such deck components as living quarfers, helipads, dril-
ling tables, etc., The beam~column elements in this analysis are

subject to the following restrictions:
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Figure 2.0-1 General definition sketch
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The elements are composed of a linearly elastic mate-
rial. Significant deviation from linearity of modulus of
elasticity in such elements is usually an indication of
vielding, a condition undesirable for a practical design.
Although the beam-column elements may undergo large dis-
placéments elastic deformations are assumed to bé small
enough that small deflection beam theory is valid within
the elements.

Shear deformations are neglected. The elements are con-
gsidered to be long enough that transverse deformations due
to shear are negligible compared to those due to bending.
Bending moments of inertia about the major and minor axes
need not be the same. This permits modelling of standard
structural shapes used in deck framing.

Polar moments of inertia may be independent of bending
moments of inertia to permit the use of experimentally
determined torsional constants.

Element weight density may be specified independently of
element mass density so that the quasistatic solutions,
i.e. solutions in which inertia forces are neglected, of
dynamic problems may be performed for comparison with
dynamic solutions including inertia.

Hydrodynamic load coefficients are assumed to be indepen-
dent of the orientation of the beam. No account is taken
of variation in Reynolds number or Keulegan-Carpenter

number within the flow field.
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8. The hydrodynamic load coefficients are assumed to apply to
"
: an axisymmetric body. Since most submerged members are
- tubulars, and in light of the scarcity of information
. ' concerning hydrodynamic coefficients of nonaxisymmetric
™ . shapes, the assumption is a reasonable approximation.

2.1.,2 Cable Element

The second essential structural element found on most com-
pliant structures is the guy or cable element which provides
lateral sﬁability to the structure. Cables behave in an inherently

geometrically nonlinear fashion and linear approximations are suf-

ficient for only small deflection, low cable sag to span ratio

-
;3 problems. The cable elements of this analysis are subject to the

2 following assumptions.

A 1. The cable elements are composed of a linearly elastic

?% material. Most chains and steel wire ropes may be

N successfully’modelled under this restriction. Synthetic
-

iﬁ ropes do not generally satisfy this restriction, exhibi-
o~ ting highly nonlinear elastic curves as well as hysteresis
o

fj ovetr much of their working load range.

ﬁ 2. The cable elements are assumed to possess negligible

J flexural and torsional stiffnesses. This assumptionbade-

5 |

quately describes chain and most cable. Large diameter

[oges

wire rope however may have significant flexural and tor-

sional stiffnesses if the length to diameter ratio is

sufficiently small.
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3. In the slack condition, determined by the absenée of ten-

sion, zero structural stiffness is assumed.

I |

4., In the slack condition, inertia loads due to cable mass

] and added mass are transmitted to the connecting struc-
ture.
| N
§}§j , 5. TFElement weight density may be specified independently of
= v element mass density so that quasistatic solutions of
¥

dynamic problems are easily implemented.
E} 6. The cables are assumed to be cylindrical in shape and
G : '

hydrodynamic 1oad coefficients are assumed to be indepen-

g

dent of cable orientation and local water particle kine-

matics., These assumptions are reasonable for all ropes

i |

and, if a sufficient length is considered, they are also

valid on the average for chain.

2.1.3 Foundation Element

HNEERE I

The compliant platform is eventually anchored to the seafloor
by one or more of a variety of foundation devices such as piles,
fluke anchors, or gravity foundations. There is, of course, inter-
action between the seafloorvand ﬁhe structural anchorage. To
account for this interaction a simple foundation element is used.
it is subject to the following restrictions:

1. The foundation stiffness is linear over the range of

applied loads., |

2. The foundation may have different stiffnesses in each of

the six degrees of freedom.
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3. Energy dissipation by the soil is assumed to occur as
.
' equivalent viscous damping.
=
4, The damping parameter, like the stiffness parameter, may
3
;j be specified separately for each of the six degrees of
o freedon.
. 5. Any effective mass of the foundation must be represented
% as a lumped mass at the foundation to structure connec-—
tion.
-
: 6. Hydrodynamic loads on the foundation are ignored.
3§ 2.2 loads
o
In addition to dead loads due to gravity the compliant struc-
)
i “ture is influenced by buoyancy, waves, currents, tides, wind loads,

seismic loads and a variety of live loads peculiar to the purpose

of the structure. Only loads due to gravity, buoyancy, waves and

™ currents are considered in this work.

v 2.2.1 Gravity

;5 For the purpose of this study gravity is specified to act only
j ’ on members for which a weight density is specified and also on all
;j concentrated masses.

2 2.2.2 Buoyancy

2; The buoyancy force is assumed to act in opposition to the

- forces due ﬁo gravity. It is applied to all members for which

3 displaéed volume is specified and is applied only to those elements

or portions of elements which lie below the still water level.
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2.2.3 Wave Loads
Wave loads are calculated using a generalized form of the
Morison equation. The Morison equation as originally proposed
(Morison et al.,, 1950) for a fixed vertical pile is expressed as
2

. . I “
p Cy D | ul| 4 +7 e Cp D7 ] dx, (2.2.1)
where p is the fluid density, D is the pile diameter. The horizon-

tal fluid particle velocity ., and .the horizontal particle

1?
acceleration ;l are determined using an appropriate wave theory.
The parameter Cp is the empirical drag coefficient and Ct is the
inertia coefficient. Both coefficients are determined from
governing design rules or from experimental data.

To calculate the forces on an inclined cylinder the Morison
equation needs to be modified to account for the orientation of the
cylinder axis relative to the water particle velocity and accelera-

tion vectors. Although there are at least four different methods

of calculating forces on inclined cylinders using the Morrison

equation (Wade and Dwyer, 1976), the method recommended by Sarpkaya

and Isaacson, 1981 is used in this work. The resultant water par-
ticle velocity and acceleration vectors are decomposed into com-
ponents tangent to and normal to the cylinder. The normal com-—

ponents are used to calculate the wave loads. Forces due to the

tangential components are neglected. That it is acceptable to

neglect the tangential component has been shown by Berteaux,

1976. The equation may thus be written in vector component form as
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ar. " = [% p Cy D |u 11\1|u11\1 +%p o p? ulf ] dx} (2.2.2)
where the superscript N indicates flow normal to the cylinder axis
and dxi is the différential distance along the cylinder axis.

The equation (2.2.2) may be further modified to account for
the motion of the cylinder in the fluid., The inertia coefficient,
CI’ may be considered to be made up of two components, the added
mass coefficient, Ca, and a term due to the pressure gradient of
the accelerating fluid. The added mass term is the value of fluid
mass which must be accelerated at the same rate around the cylinder
to preserve a uniform flow field both ahead of and behind the
cylinder. 1In ideal flow its value can be shown to be unity for a
cylinder, but real fluid effect usually reduce this value to less
than unity. The term due to the pressure gradient of the accelera-

ting fluid may be calculated from the Bernoulli equation and is

found to be unity. Thus,
CI = Ca + 1.0 (2.2.3)

when the fluid is uniformly accelerating past the éylinder. When

the cylinder is accelerating in a fluid at rest

c. =2¢C - (2.2'.4)
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After the velocity and acceleration terms for both fluid and cylin—-

cey

der are substituted into Equation (2.2.2), we obtain

g

Eﬁ w o .1 + N « N « N » N
. dF’y =[50 Cp D i 94 | @ i " 94
i
. I 2" N _1I 2" N ‘
+-Zp(Ca+l)D u g 4pCaD qi]dxi (2.2.5)
™)
where d? and q? are the components of cylinder velocity and accel-
ﬂ‘
vj eration normal to its axis.
-
4 2.2.4 Current Loads Without Waves
ol

In the ocean, current direction need not coincide with wave
direction and may vary with depth. The current speed may also

change with depth. To permit a realistic current description, a

current profile which may vary in both magnitude and direction with

3 depth is considered. The current is assumed to be steady and it is
£ ,

assumed to have no vertical component.
5 The hydrodynamic load due to current only is calculated using
- the drag term of the generalized Morison equation
- , c _ 1 N _ N N _ .N '
¥ aFC =3 locp | ¥ -4 | Gf -4 ) ax (2.2.6)
o .
- N .
i where v, is the current velocity component normal to the cylinder

and Fz is the hydrodynamic drag force due to current.

n

+

g
e

.
Wi i
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2.2.5 Combined Wave and Current Lloads
E: Wave and current loadings naturally occur simultaneously. An

exact treatment of the combined wave and current kinematics for

other than a uniform current is a complicated problem and is

unsuitable for the purpose at hand. Fortunately, a simple super-

position scheme has been shown to be adequate when the Morison

F? equation is used for most situations of engineering interest

;

(Dalrymple, 1974). Provided that the particle velocities are sum-

med before calculating the drag load rather than calculating the

drag loads individually and then summing (the result being under-—

predittion of the drag load) the nonlinear effects due to the

interaction of current and wave are negligible (Leomard and

Hudspeth, 1979); When the drag force is properly accounted for the

combined force equations becomes

.~
| H w+ e
E Fg -jL (dF )
1 N N N N N N

IL[prDD‘u +v, - q ‘(u +vi—qi)
-
CL -IL 2.0N— -II— 20"N '

+ 7 (Ca + 1) D ug 7 P Ca D q ] dxi (2.2.7)

In this final form of the equation, CD and C, values determined

o ~ from experimental data should be selected using the Reynolds number

of Keulegan-Carpenter number calculated using |(un)max + v.o- 4.l
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where (ﬁn)maX is the maximum normal water particle velocity due to

wave., That is,

@+ ¥ - &
R = (2.2.8)
e v
and
(&N)max + - T
K, = 5 (2.2.9)

where Re is the Reynolds number, K is the Keulegan Carpenter
number, v is the kinematic viscosity of the fluid, and T is the
wave period.

Water particle kineﬁatics due to waves are calculated using
linear wave theory with no adjustment for free surface effects.
When a current is present, the wave characteristics need to be
modified to reflect the current upon which the wave is super-
imposed. Figure 2.2-1 shows a sketch of the wave-current field.
If the curreﬁt is uniform, one may derive the wave particle kine-
matics in a reference frame moving at a constant velocity which
freezes the wave form with respect to time (Sarpkéya and Isaacson,
1981). The current is assumed to move at a uniform velocity, v .
The wave celerity, ¢, in a reference frame moving at velocity, v ,
is defined as ¢ = w/k where w is the angular frequency
(w =‘2n/T) and k is the wave number (k = 2r/L; L = wave length).

The reference frame which freezes the waveform thus moves at
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Figure 2.2-1 Definition sketch for waves. and current
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* . ' > . ' 3 -
velocity ¢ + v. If 4 is defined as the water particle velocity

observed in the reference frame moving at ¢ + v then ' = u -

v - ¢, where U is the water barticle velocity observed in the fixed
reference frame. Using the standard small amplitude wave theory
boundary conditions, one may solve the Laplace equation,

V2 $' = 0, &here ¢' = ¢ - (c + v) xp and xp is a horizontal dis-
tance measured in the direction of wave propagation. The dispersion
1/2 |

relation obtained is ¢ = [g-tanh kd]

" where g is the acceleration

of gravity and d is the water depth. 'This relation is identical to
that derived fqr waves in no current, i.e. if the reference frame
is moving with the current, the wave appears identical to the wave
that would be observed if there were no current. It has the same

-

wavelength and period. This implies that in the fixed reference

~ frame the presence of uniform current is observed as an apparent

change in period of the wave, i.e. a Doppler effect.

The wave celerity with respect to the fixed reference frame
may be expressed as c, = ¢ + ¥ and the wave frequency with respect
to the fixed frame may be expressed as w, = w+ k v . For currents
oblique to the direction of wave propagation, only the component of
current parallel to the direction of wave propagation alters the

wave kinematics so that the wave frequency may be defined as
wcr= o+ k )G‘ cos a (2.2.10)

where o is the angle between current direction and wave direction.
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If the current profile varies with depth the problem is more
complicated and a simple solution is no longer possible. Although
Biesel, (1950) has solved the problem for a triangular steady cur-
rent profile, more genmeral solutions are unknown. As a con-
sequence, an ad hoc procedure is used here to account for the
apparent Qavé frequeﬁcy shift. A weighted average current in thé

wave direction is calculated according to the relation

f_o v (x.,)cos a (x,) cosh (k (x, + d)) dx
> = ¢ 3 3 3 3 (2.2.11)

[24 cosh (k (x5 + d)) dx,

where d is the water depth and <¥> indicates the weighted average
current velocity in the direction of the wave. The frequency Wy is

then calculated from the relation
w, = w + k <> (2.2.13)

There is an ambiguity as to which wave frequency value is
specified in the design wave or wave spectrum. In situ recordings
obviously yield values for w, . Hindcasts based on wind data give

values for w. If one has values for w it is necessary to calcu-

c’

late an adjusted wavelength which reflects the frequency of the
wave in still water. If one has values of w, it is necessary to

compute w.. Rarely in the conceptual or design phase of most off-

o

shore structures is in situ information available for design and

hindcasts are often the only source of loading information. For
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this reason, the wave period that is assumed given is that corres-

ponding to w. The value of Wa is calculated.

2.2.6 Concentrated Loads and Masses

To permit some versatility in loading, provision is made for
the use of both concentrated loads and concentrated masses. The
concentrated loads are time invariant‘in the dynamic solution. The
bconcentrated masses posséss time invariant weight due to gravity in
static calculations and they have both time invariant weight and

inertia which are effective in the dynamic solution.

2.3 Equations of Motion
Newton's second law for a multiple degree of freedom system

may be written in vector component notation as
F, = M., q. (2.3.1)

where the force vector, F., is composed of the restoring force

1°?

Kij qj, the structural damping force, Cij qj , the forcing function

H s
Fi (t), and any steady loads Fi . M.

3 is the mass matrix, K;: is

1]
the structural stiffness matrix, Cij is the structural damping

matrix and qj is the vector of structure displacements. By

inserting the expressions for F; into Equation (2.3.1), one obtains

M., q. +C,, q. +K,, qj = F? () + Fi (2.3.2)
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which is recognized as the equation of motion of an oscillating

‘system.

Since structural damping is generally assumed small with res-
pect to hydrodynamic damping, the second term in Equation (2.3.2)
is neglected in this work. Integration of Equation (2.2.7) over
the length of the member, L, and substitution of the result into
Equation (2.3.2) lead to the relation

1 N| N _ «N _ N
Moooa +Koa =[50 CpD V] ) + v - q))

2 s

2 "N “N
+ % 5 (c, + 1) D o - I, c, 0’ q] L+ F (2.3.3)
where
N 3 «N N eN.2 (1/2
vl = (2 @+, =an") (2.3.4)
i =1 i i* i

is the resultant relative velocity of node i. This set of simul-
taneous second order differentral equations must be solved numer-
ically for all but the most trivial structures. Chapter 3

describes the numerical techniques used in this work.
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3.0 Finite Element Formulation

The mathematical model of the compliant structure is based on

the stiffness method of finite element analysis. The load-

deformation characteristics of a number of discrete elements com—

g} ‘ prising the structure are described in approximate fashion by the
o ,

load-deformation characteristics of the nodes to which the elements
m
ol
i are connected.
) In the case of static linear structural analysis, the discre-
\::ii .
i“ tization leads to a set of simultaneous linear equations which may
= be written in indicial notation as
ol
! ,
F, = K,, q, | -0.
;J i ij qj (3.0.1)
)
fj where repeated subscripts imply summation over the range 1, N; N =

number of degrees of freedom, F; are components of the nodal load

vector, Kij are invariant stiffness coefficients due to the con-
E? » necting elements, and a3 are components of the vector of nodal
i .
displacement,
For large-deflection statical problems, the stiffness matrix

becomes a function of the displacement vector,

Fi = Kij (qk) qj (3.0.2)

G




i |

Fanlil

il |

]
o

i

3

S e

T

e |

LA

.

38

and the solution of thé nonlinear simultaneous equations becomes
more difficult. Generally the nonlinear problem is solved by first
linearizing the nonlinear relationship and then performing some
form of incremental, or iterative, or combined incremental-
iterative solutionm.,

No matter which solution scheme is selected for the nonlinear

- problem, it is required to analyze the structure in a comsistent

reference frame so that the true loads and displacements and the
true strains can be calculated. Small defiection analyses are
performed using a Lagrangian reference frame in which the new posi-
tion of the structure after loading is measured from the original
position. For such analyses the small strain relationship between
deformationkand disﬁlacement is valid and the étrain—displacement‘
relationship is linear. When combined with a linearly elastic
stress~strain relationship such as has been assumed for this work,
the resultant load-deflection relationship is a linear one, i.e.
Equation (3.0.1).

The rigid body translational components of the nodal displaée—
ments become important relative to deformation when displacements
are large. In structural analysis there are two génerally used
methods of dealing with these large displacements, the total
Lagrangrian formulation and the updated Lagrangian formulation
(Cook, 1981). The former uses the Green-Lagrange strain tensor,
which contains nonlinear terms, to account for large displacements

in the element formulation. The latter permits the use of the
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small displacement strain tensor by updating the nodél coordinates
in a manner that accounts for the large displacements. The updated
Lagrangian formulation was selected for this work because of the
availability of a 1argé variety of possible elements for use in the
program element library.

In the updated Lagrangiam teéhnique the Coordinateé in‘which
the elements deform are local coordinates for which the use of the
small deformation strain tensor is valid. The orientation of these
local coordinate systems is determined from the current nodal coor-
dinates which are calculated from the displacement results of the
most recent increment or iteration. The deformations of the ele-
ments due to previous loads are converted to equivalent intermnal
nodal forces and are treated as preload. This preload cancels that
part of the applied external load which would cause the existing
deformation and leaves only the difference between the external and

internal load to cause additional deformationm.

3.1 Static Solution Techniques

The simplest solution to the static equations of equilibrium
occcurs when thevstiffness matfix as invariant;'the force
displacement relation thus being linear, In this case a Gauss
elimination scheme will obtain the unknown displacement, given the
stiffness and the nodal loads. The LDLT decomposition and back-

substitution variant of the basic Gauss elimination technique

Y(Bathe, 1981) was chosen as the funaamental equation solver for

this class of problems. It was selected primarily because of the
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wealth of available program procedures which have been developed

- for it (Bathe, 1981, Zienkiewicz, 1977).

If, as discussed in Section 3.0, the calculated nodal
displacements are large, the stiffness matrix becomes a function of

the displacements. To solve the nonlinear relations, a residual

feedback technique is used (Tuah, 1982). This technidue is a com-

bined incremental-iterative solution of the linearized load-
displacement relations.,

The iterative part of the algorithm may be derived by
expanding the nonlinear matrix equation (3.0.2) in a Taylor series
about the displacement vector, 93 evaluated at an apﬁroximate

displacement, qg—l,

aFi(q)]n—l
3q.
qJ

)]n—l 2

n-1 n, _ n n
F.(gq ~ + Aq ) = [F, (g + Aqy + 0 [Aqg]" (3.1.1)

withn=1,2,3.... A following lower case superscript denotes
iteration number and Aq? is a correction to q?nl. The displacement
vector, q? is defined as the initial structure displacement, When
only first order terms in the Taylor Expansion are retained and
when it is recognized that

2P (0 o1y o (3.1.2)

9q. ij
qJ J

where K:;l is the tangent stiffness matrix, the equation becomes
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)n—l n-1

n-1 n, _ n
F, (qk + Aqk) = F, (q + K, qu (3.1.3)

)n-l is the load vector required to keep the

structure in the shape represented by the displacements q§_1 and it

The load vector Fi (qk

. . : n—-1
is equivalent to the internal load vector Ri caused by these

displacements. The expression may then be rearranged as

Aq? = - § (3.1.4)

qI.1 = q,. + Aq? (3.1.5)

The algorithm can be converted to an incremental-iterative
scheme by simply defining the first iterations to the stiffness
matrix, Ki?, and to the intermal load vector, Rg, at time, t + At,

as those determined at the previous time, t. That is,

t+At K.?_l Aq? - t+AtF' _ t+AtRP—1 (3.1.6)
i3 3 i i .

where a leading superscript denotes increment number; the initial
value of the internal load is the internal load determined from the

previous convergent load step,

tHAt po _ tgn (3.1.7)
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and the initial value of the tangent stiffness matrix is also
determined from the configuration of the previous convergent load
step,
t+At (o) t, n
At g 0 = BT (3.1.8)
1] 1]
Convergence to the proper solution during iteration is deter-
mined by calculation of the norms of the displacement vectors a3

and qu. When

: j
- =l < Tol (3.1.9)

o122

Lo
fan
[
.

where Tol is a specified convergence tolerance and N is the order
of the vector, convergence is assumed to have been reached.

Many compliant structures possess an initially low, or zero,
stiffness with respect to transverse loads when in their still
water équilibrium configurations. Atﬁempting to solve the stiff-
ness equation without some sort of starting modification‘results in
either a singular matrix for which a solution is not possible or in
extremely large initial displacement estimates and the probability
of slow or no convergence to a solution.

In order to accommodate low initial'stiffneés, the residual

feedback scheme has been modified to use a technique known as
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viscous relaxation (Webster, 1980). The procedure has been shown
to give excellent convergence characteristics in cable problems
(Webster, 1980; lo, 1981; Tuah, 1982). It is implemented by the
addition of a viscous drag term to the iterative part of the resi-

dual feedback solution algorithm,
g, +K T At = F - R (3.1.10)

where ﬁj is a vector representiﬁg the rate of displacement and Cij

is an arbitrary damping matrix usually selected as a constant mul-
tiplying the identity matrix, i.e. Cij = C 513’ where aij =
(=1 if 1 = j; = 0 if i # j) is the Kronecker delta, Since the rate

of displacement may be expressed as the change in displacement with

respect to two iteration steps,

n
day .
j, = ——— = . s 3.1.
4 = 70D AqJ ( 1)
Equation (3.1.10) may be written as
(®s,. +x2 A= - (3.1.12)
ij ij j i i

which is the modified form of the iterative part of the residual
feedback scheme,
To eliminate the artificial stiffness as the iteration pro-

ceeds, the value of C is decreased each iteration by the alogrithm.
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C =ucC (3.1.13)

where p is a decrement parameter specified to give effective rapid
convergence. The selection of the best value of y is problem
dependent and should be chosen by trial and error. The selection
of an initial value for C also affects convergence and is adjust-
able by use of a damping factor, 8. In this work C is initially
calculated as

o

C” =8 Min< K.a (3.1.14)

xial>elem

where <K__. > is the average of the axial stiffness for all
axial elem

the elements of a particular element type, e.g. beam or cable. The

symbol Min indicates that the least average stiffness among the

element types is used. The selection scheme is purely arbitrary,

but it has been shown to give acceptable results.

3.2 Dynamic Solution Techniques

Because of the potentially strong nonlinearity of both the
hydrodynamic loading and the structural response, solution of the
equation of motion, Equation (3.2.3), is performed in the time
domain. The solution algorithm selected is the Newmark method.
This method is an implicit self-starting scheme which has been used
with success for several noniinear problems (Bathe, et. al., 1975;

1o, 1981; Tuah, 1982),.
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The method is based upon the assumption that the acceleration

varies according to some known function during each time step., In

the incremental form,

t+At t, t” t+At”
By - g + A -)qy +1¢ . q;1 at (3.2.1)
‘and
tHAt  _ t t, 1\t t+ALT 2
q = 9 * gar+ [(F-a)qy te q;] at (3.2.2)

where ¢ and a are parameters which must be chosen. Substituting

Equations (3.2.1) and (3.2.2) into the equation of motion

Mij t+At.c.1j + Cij t+AtElj + Kij1:+Atqj - t+AtFi (3.2.3)
and solviﬁg for t+Atqj, one obtains
iij t+Atqj _ t+At%j '(3.2.4)
where
ﬁlj = a0 Mlj + a1 Cl] + Kij
t+AtAlj = t+AtFij + MlJ (aot§j + a, tqj + a, taj) (3.2.5)
-+ Cij (a1 tq. + a, tﬁj + ag taj)
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and
a = 1 a, = & a, = 1
o « At2 1 a At 2 a At
_ L SL _ btz
ay = 5 1 a, z 1 ag =3 (a 2) (3.2.6)

Equation (3.2.4) constitutes an equivalent static problem from
which qy can be determined. Recommended values of the o and t‘
parameters are 0.25 and 0.5, respectively (Bathe, 1981). These
values provide an unconditionally stable integration scheme for the
linear problem and generally provide good stability characteristics
for the nonlinear scheme although unconditional stability is no
longer guaranteed (Bathe, 1981). The scheme has not been proven
unconditionally stable for all nonlinear problems, but proofs of
itsnunconditional stability for specific ﬁfoblems have been
obtained (Belytschko and Schoeberle, 1975).

t+AL

(3 3 t+ t.
Once q is determined, new values for A

t-*-Atq and q for

the next time increment are calculated by Equations (3.2.1) and

(3.2.2). The resultant expressions are

t+at” t+At t t, £
b q=a ( 8 q- 9 - a, 4~ a3 q - (3.2.7)

. . . AL
that, _ ot t EHALy (3.2.8)

[
L
+
O‘m
Q
+
[

where
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a, = At (1-7) a

6 - C At (3.2.9)

The solution for a3 from Equation (3.2.4) is strictly incremental
and is not particularly accurate for nonlinear problems unless a
very short time step is used.

Aﬁ improved nonlinear integfation scheme can be formulated by
adopting a residual feedback iteration scheme at each time step.
Integration at each instant in time proceeds until dynamic equili-
brium is achieved. If the inertia and damping terms are treated as
equivalent loads, the residual feedback scheme of Bathe, 1981 may
be exteﬁded to include damping and may be written as

t+atyn-1 t+atn , t-+;At n—l“afl + t+At,n;1 ‘ n
i

+ C.. K,.  Aq
J J 1] ] 1] ]

t+At 0 t+At_n-1

= Fl Rl (3.2.10)
where
t+Atq? _ bttt 2—1 + Aq? (3.2.11)

In a manner similar to the derivation of the purely incremental

scheme with Equation (3.2.11) substituted for t+Atqj , Equation

(3.2.10) is solved for t+AtAq? to obtain
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t+AtK..A q? - t+AtF? _ t+AtR?—1 _ t+AtMg. (a t+Atq?—1)
ij j i i ij o) i
t+At n t+At n-1 '
Cij (a1 qj ) (3.2.12)

which is the desired recursive formula for an equivalent static
problem. The solution to Equation (3.2.12) then proceeds as was
described in Section 3.1 for the combined incremental and iterative
statical problem.
The external force F? in Equation (2.3.2) contains the hydro-

dynamic drag term

D 1 N + N * N N
F, =« C.D |Vl (u, + v, - q.) (3.2.13)
3 =70 P [yl Gy vy - g
However, a? at time t+At is as yet unknown, If this nonlinear drag

term in the external force is moved to the left side of Equation

(3.2.10) leads to a nonlinear set of simultaneous equations. This

problem is avoided in this work by using a scheme patterned after
Anagnostopoulos, 1982. The value for d? is the value calculated

from the last time step, tq? . The force FP is thus calculated as

1 N
CHAEE = 2o cp V17

: (FHAt (oNn o Bny tali“] (3.2.14)

1 1

where
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q.

(t+At(G?n + e?n) _t -?(n—l))i)l/Z (3.2.15)
1

\vfl = (

it 10

J

The drag component of the hydrodynamic force is thus approximated
at the beginning of each iteration but the approximation is up-

graded with each subsequent iteration.

3.3 General Derivation of Element Stiffness and Mass'Matrices.
The derivation of the element stiffness matrices for use in
Equations (3.1.12) and (3.2.12) may be carried out using the prin-
ciple of virtual displacements and the Rayleigh-Ritz method of
approximate solution. The principle of virtual displacements
states that:
"For a deformable structure in equilibrium under the action of
a system of applied (externmal) forces, the external virtual
work due to an admissible virtual displaced state is equal to
the virtual strain energy due to the same displacement.”
(McGuire and Gallagher, 1979)

This principle may be expressed in indicial notation as
[y 6e; 0y 4V - 8q  F, =0 (3.3.1)

where Gei are the virtual strains, qu are the virtual displace-
ments, F; are the real loads applied to the structure, and o, are
the real stresses resulting from the loads F;.

The strains are related to the stresses by a constitutive

relation of the form
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c. =0_. + D.. . ’ o (3.3.2)

where Ooi is the initial stress and Dij is the constitutive matrix

which for linearly elastic isotropic materials takes the form

[~ Vv AV] -

1 1-v 1=-v 0 0 0

AY]
1 1 0 0 0
_E (1-v)
D= Ory (-2v) 1 0 0 0 (3.3.3)
1-2v
16D 0
1-2v

Syn 5(1-v) ©
1-2v
2(1-v)

in which E is the elastic modulus and v is Poisson's ratio. When
Equation (3.3.2) is substituted into Equation (3.3.1), the relation
becomes

[y 8e5 053 AV # Iy 8y Dy €; dv - 8q; F, =0 (3.3.4)

The virtual strains are related to the virtual displacements

by the relation
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de .

_ i
Gei = 3q. 8 9y (3.3.5)
k
which, when substituted into Equation (3.3.4) yields
asi aei
fvﬁ“sqk o,y 4V +fv-,a—q—5 qy Dyy ey 4V
k k
- 6 qk Fk = O (303.6)
Since qu is independent of V,
' aei asi
8q, [ IVEE;"oi av + fva—qk' Dy &5 4V - Fl=0 (3.3.7)
With aqk nonzero for nontriviél cases,
aei Bei ‘
fv‘a'a‘ o 5 4V + fviq’ Djj €5 AV - F =0 (3.3.8)

which is the basic virtual work expression for element stiffness
relations.

It remains to specify the strain-displacement relation
between £s and 9y - The relationship between strain at a point on

the element and displacement at that point is given by

€. (xk) = fij E.

i i (xk) (3.3.9)

where gj is a vector of displacement functions which describe the
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deflected shape of thé'eleméﬁt. in Lagrangian coordinates fij is
the Green Lagrange strain tensor for large deflection and the small
displacement strain temsor for small deflection. 1In the finite
element method, the displacements, gy are calculated atkthe nodes
of the elements. The displacements within the element, gj are

expressedvin terms of the nodal displacements by means of the shape

function matrix, NBk’

Equation (3.3.9) then becomes
e, =f£,. N (3.3.11)

i ij jqu

The expression fiijk describes the relation between nodal dis-
placements and the strains at any point within the element. Cook,

1981 has defined this matrix as the strain-displacement matrix

Bik = fiijk (3.3.12)
The strain displacement relation thus becomes
e, = Bik 9y (3.3.13)

When Equation (3.3.13) is substituted into Equation (3.3.8),
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Jy By 9oz 4V F vy Bix Dis By 9y v - F, =0 (3.3.14)
The values of g are not functions of'V, and thus
Iy Bis Dij Byy dv q, = F) ~ [y Bix 91 9V (3.3.15)

Comparing Equation (3.3.15) to Equation (3.1.4) and noting that

. \ n . s s
9, is equivalent to qu, we see that the stiffness matrix is

Ky = fv Bix Dij Big av (3.3.16)
and that the initial structure prestress is

0 —
F, o= [ By o5 4V (3.3.17)

and Equation (3.3.15) may then be rewritten as

O
Kk2 q, = F, - F (3.3.18)

Mass matrices may be derived in a manner analogous to the
stiffness matrices. By D'Alembert's principle, Mij aj may be
treated as an inertia force. The terms in Mij are equivalent
masses. They are the mass and inertia values which when subjected
to nodal accelerations apply inertia forces to the node which afe

the same as the inertia forces applied to the node by the contin-

uous element undergoing the same nodal accelerations.
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The kinematics of any point in an element may be expressed in
terms of nodal displacements by again using the shape functions.
The displacements are given by Equation (3.3.10) and the cor-

responding velocities and accelerations are given by

£ =Ny 94 (3.3.19)

Ne; 44 (3.3.20)
The inertia force at any point may be expressed by
Pk = Nki pij qj (3.3.21)

where Py is a matrix of directionally dependent mass density terms
and Pi is the inertia force at any point within the element. The
density terms are'dependent upon the directional characteristics of
the effective mass and moments of inertia of the particular
element.

To relate the inertia load of each Pi to the nodal inertia

loads, again use the principle of virtuai displacement.
Flogq, = [ PL 6 £ av (3.3.22)
k "k v 'k k T

When Equation (3.3.10) is substituted into Equation (3.3.22)
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Fl §q, = [ PL N, 6q_ dv ~ (3.3.2%)
k k vV "2 ik k -t
For nonzero values of qu, this equation may be rewritten as
- o ; v ‘ ;
F = fv N By @Y (3.3.24)
If Equation (3.3.21) is substituted into Equation (3.3.24)
Fl = [ N, N, p.. dV q - (3.3.25)
k V gk ogi Pij 3 .

is obtained. The integral is termed the consistent mass matrix,

Mkj’ and Equation (3.3.25) becomes

1 -
F~ = . 9. 3.3.26
k M'kj qJ ( )
where
My = Iy Mo N1 Py av (3.3.27)

3.4 Beam—-Column Element
The beam-column element selected is a two-noded straight
element. Strain deformation of the element is described by three

translational and three rotational degrees of freedom at each

‘node. The displacement, or geometric location of the element is

described solely by the three translational degrees of freedom.
The beam—column is thus a subparametric element. It is derived
using small deflection approximations but it accounts for the non-

linear effect of axial load on bending stiffness.
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The stiffness matrix may be derived from Equation (3.3.16).
To permit the use of reasonably large elements and still account
for the effects of axial loading on bending stiffness, the element
will be formulated to include the éhange in bending stiffness due

to axial loads. Small-displacement approximations will still be

made.
57 To deal with the axial load effects, the Green Lagrange strain
[ v
tensor, FigL, must be used, This strain tensor is written as
- J
i ‘
3 1 3 (2 1 9 (2 1 3 2
2t = (2 5 (52 5 (=)
q axl 2 axl 2 2xl 2 axl
1 3 2 d 1 9 2 1 9 2
5 () 2 v 2 5 ()
? 2 3x2 3x2 2 sz 2 ax2
e GL 1 3 (2 1 A 3 1 9 (2
= | (e 5 () =+ ()
. 2 ax3 2 8x3 3x3 2 8x3
3 + 3 3 3 + 3 3 3 3
axz 3x1 ax2 axl axl 3x2 Bxl ax2
88 88 aa - 88 aa 88 + 38 aa
X, 3Xq Xy X, 9%, x, X, 3%,
aa + 88 aa aa 88 aa + 88 33
- ¥3 9%z oXy ¥3 °%) ¥ %3 0%y
; L i
(3.4.1)
i
]
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It may be rewritten as the sum of the liﬁear small displacement
E} - strain tensor, F;& , and a tensor of nonlinear terms, F?? R
e S L (3.4.2)
13 1] 1]
or,
~
&’ B ' 7 - -
d }_( 3 )2 l_( 3 )2 l.( 3 )2
Bxl 2 axl 2 axl 2 Bxl
d 1 3 (2 1 3 2 1 3 (2
o = () 5 (2 5 (=)
—
8x2 2 8x2 2 ax2 2 axz
- GL 3 1 9 2 1 9 2 1 3 2
: F7 = =+ |56 = () 5 (2
: 8X3 2 3x3 2 ax3 2 ax3
B 3 3 3 9 33 33
: sz axl axl axz Bxl ax2 axl axz
: 3 3 3 3 3 3 3 3
ax3 8x2 8x2 Bx3 sz ax3 3x2 8x3
—
" 3 3 9 3 ) 3 3 3
ax3 axl L_3X3 axl 8x3 Bxl 3x3 Bxl
- el R —-—
(3.4.3)
-
- If it is assumed that:
& 1) torsional and shear contributions are small with respect
™ to bending contributions for strain in the xi direction
3 ~ : , :
‘ 2) normal strains in the Xé and xé directions are negligible
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3) bending deformation contributes little to torsiomal strain
Eg 4) the contribution of nonlinear axial deformations are small
with respect to nonlinear bending deformation
5) rotational deformations are éufficiently small in bending

such that the normal strain in the xl' direction may be

expressed as

9k 3 £2 3 £3
= — '
e = 39 + x5 3 + %5, ) (3.4.4)
1 9 X 9 X
2 2 ! .
3 EZ 2 £3
where 5 and > are the radius of curvature then Equation
3 x! 3 x!
E} .1 1
(] .
(3.4,3) becomes
2 _xr o’ —x! 2> o L2z 12,2
ax! 2 2 3 ' 2 2 “3x! 2 “ox!
o 1 rth:e X 1 1
1 1
0 0 0 0 0 0
el "o o 0 0 |+]0 0 0
' 0 0 0 0 0 0
- 3 2
| Lo 0 o | |o 0 0
(3.4.5)
” : The shape functions, Njk’ assumed for the element are cubic
. polynomials. In local coordinates xi , as shown in Figure 3.4-1,

3

7
| T
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Figure 3.4-~1 " Definition sketch for beam-column element
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the assumed shape functions for the beam-column element are

A B
C -D E ~F
% ,
5 N = C D E F (3.4.6)
"" A B
- G D -G F
;;
- G D -G F
3 i B
where
.
¢ et -
L
™
1
i x!
B = L
L
L3 - 3L x‘2 + 2 x!
1 1
C = 5
L.
L2 x!' =2 L x'z + x'3
1 1 1
D= 3
L
o~ 3 L x'2 -2 x'3
Eﬁ 1 1
a E = 3
B L
X 3 L x 12
; 1 1
SE F= 3
L
E’Z 6 Lx.' +6x,1°
& 1 1
G = 3
L

-
i

1

[F.
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- When Equation (3.4.2) is substituted into Equation (3.3.12),

e

L NL

- Bik = (fij + Fij) Njk (3.4.7)
-y is obtained. This may be rewritten as

4

"
- _ LL NL
J Bix = Bix * Bik | (3.4.8)
-
%5 If the symmetry of Equation (3.3.3) is recognized, Equation
— (3.3.16) becomes upon substitution of Equation (3.4.8),

L L L NL NL NL

poom, =

i , | K1 jV(Bik Dij le +2 (B D5 le) + Bjy Dy le) dv  (3.4.9)
ﬁ

! For a beam of constant cross-section, this equation may be rewrit-

ten
_ L L L NL NL NL '
Kpp = Jo Ja Byt Dyy Byn 2 Byp Dy Byp + Byy Dyy Byp) 44 dxg
(3.4.10)

oo,

Sj where A is the cross-sectional area of the beam and L is its
length.

% e o , , ,

. Integration of the first term in Equation (3.4.10) yields the

- linear stiffness matrix, where A is the cross-sectional area, E is

I ' .

f!*";

the elastic modulus, J is the torsional constant, I_ and I, are the

y

g
Gl
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moments of inertia about the #é and xé axes respectively and v is
Poisson's ratio.

Integration of the last two terms in Equation (3.4.10) yields
the nonlinear, or geometric, stiffness matrix, where Fi is the
axial compressive force on the element.

Conversion of the derived local stiffness matrix to global
coordinates for assembly into the global stiffness matrix is per-
formed using standard transformation techniques (see Cook, 1981).

The calculation of the‘internal load vector for the beam
element is complicated by the fact that the nodes have rotational
degrees of freedom. Implicit in the assumﬁtion of small deflection
beam theory is the use of small angle trigonometric function
approximations. The internal loads are calcﬁlated from Equation
(3.0.1) using the current element stiffness matrix and the current
nodal displacements. When the element undergoes large rigid Body
rotations, the use of the total rotatiomal displacement angle in
Equation (3.0.1) will lead to erroneous results since the small
angle approximations which were used in the development of the
element are no longer valid.

In order‘to correctly céléulate the large deflection internal
load vector using updated Lagrangian coordinates and ﬁhe small
deflection beam element, it is necessary to calculate the relative-
ly large rigid body rotation angle and to subtract it from the
total nodal rotations. The resultant relative angles of rotation

are small, provided the structure is initially well—proportionéd or
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provided there is a éufficiently fine discretization to keep the
relative angle small. Figure 3.4-2 (after Cook, 1981) illustrates
the problem in a two dimensional space. The element in its initial
configuration has a chord oriented at some angle B°. After the

beam undergoes large rigid body displacement and deformatiﬁn, the
s

element chord lies at a new angle BN described by tan -1 2 The
s

relative angles of rotation of the deformed element in its dis-

—

placed configuration are the rotation angles of the nodes minus the
rotation angle of the chord. These relative angles are the ones
used in calculating the internal load vector for the element.

In a three-dimensional space the procedure becomes more
involved. Figgre 3.4-3 shows the scheme extended to a three dimen-
sional space. For the arbitrarily oriented element as shéwn'in the
figure, this extension requires more computation, but it is
straightforward. A problem arises, however when the elemenﬁ hap-
pens to lie along a coordinate axis. Its projection into the plane
normal to that axis is a point and B is c§nsequently undefined.

The method used in this’analysis to permit a member to lie on
an axis is to always work in the current local coordinate element
reference frame when calculating the internal load vector. In’this
reference frame the element always lies along the x} axis and the

1

é - xé plane is undefined. The rigid body

rotation about the chord is set to zero. Since linear torsional

current B angle in the x

theory does not require small angle trigonometric approximations

and since the torsion was assumed uncoupled in developing the
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stiffness matrix, setting By3 to zero is consistent with previbus
assumptions. To calculate the Bi2 and B13 angles, the original
position globél nodal coordinates are transformed to the local
nodal coordinates in the current position and the rotation angles
are calculated as in the two dimensional case of Figure 3.4-2. Now
the xi axis points out of the plane of the figure and the deformed
shape shown in the figure is the projection of the deformed shape
into the appropriate plane. The angles obtained are the negatives
of the desired B angles since they were obtained in the current
reference frame rather than in the Lagrangian reference frame.

The consistent mass matrix for the beam element may be derived

using the assumed shape functions of Equation (3.4.6) and the mass

density matrix

pb 0 0
b am
o = 0 o+ p 0 (3.4.13)
0 0 pb+pam

am

where pb is the beam mass density and p is the equivalent added

mass density due to hydrodynamic flow.
When the integratioﬁ is performed in the x] and xé directions,

2

Equation (3.3.27) becomes
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- )
Mkj A jL Ny Moy Py dx) (3.4.14)

where Py is a discontinuous function of xi for the general case of
an element piercing the water surface. The integral may be written

as the sum of two integrals

_ a (n , L ' (2)
M = AL [ Ny Ny ey de ¥ Ja M Mg P55 9% (3.4.15)

1 axis,

where a is the location of the water line on the element x

. R . . n .
and in the discontinuous density, p(iz’ the added mass contribu-

tions, p2®, is a nonzero constant for the submerged portion of the
member and zero for the portion of the member above the water sur-

face. 7If the inertia terms resulting from rotations of the beam

cross sections are neglected, the mass matrix becomes
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where M; afe'given in Table 3.4.1

17

M2

(3.4.16)
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3.5 Cable Element

The cable element is a two-noded isoparametric element in

which both displacement and deformation are described by nodal

translations. It is a straight element (Figure 3.5-1) which uses a
linear interpolating function to describe the variation in tension
- between nodes.

In the local coordinate system, the assumed shape functions

are
A ") ]
1 - 5 0 0 - 0 0
1] 1]
N = 0 A 0 0 i N FERCRY
L L LI ]
x! x!
1 1
i 0 0 1 - 0 0 I
Tuah, 1982 has derived the linear and nonlinear stiffness matrices

™ for updated Lagrangian coordinates in the global reference frame.
The linear stiffness matrix is given by
m}
b § ) .
= 1 0 0 -1 0 0]
o
| 1 0 0 -1 0
pooy
i R =2 10 0o -l (3.5.2)
7 1 0 0
= 3
B
L 14




XI

Figure 3.5-1 Definition sketch for the cable element
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Here T is the cable tension and L is the element length in the

updated reference configuration. The values of T and L are given

by

3
]

TO + AT (3.5.3)

£
"

L+ AL | (3.5.4)

where the subscript, o, indicates the initial value.

The nonlinear matrix is given by

B
: o o
[c ]3x3 [C ]3x3
A E
T% KCNL - _©° > (3.5.5)
el L L
ﬂ
¥ 21 22
; (€7 ) 5,5 (€7 ] 545
where
™
j ;
C!‘%:C??’:x,lx:,[—(x:.[ x‘,]+x‘.I X:.[)"'X{I Xq
ij ij i3 1] T ] i1
L2 S (3.5.6)
- 1] 13 13
.

The values xi and xg are the current global coordinates of the

element I node and J node respectively.

-

G i

£
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Tuah, 1982 has shown that the internal load vector may be-
calculated by.
R, = K x, (3.5.7)
i ij 73 ,

where xj are the global coordinates of the element nodes in the
current configuration.

The consistent mass matrix for the cable element may be
developed in a manner similar to the beam mass matrix. It is
assumed that the cable never pierces the water surface so the added
mass is coﬁtinuous over the entire element. Equation (3.3.24) may
be evaluated using the assumed shape functions, Equation (3.5.1)

and the mass density matrix

p = o0& + o™ (3.5.8)

where p® is the cable mass density. Again performing the integra-

tion in the xé and xé directions, Equation (3.3.24) becomes Equa-
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.
L%
tion (3.4.10) where A is now the cross sectional area of the
cable. Evaluating the integral, the mass matrix becomes
2m' O 0 m' 0 0
b
= 0 0 0 m 0
b
2m 0 0 0 m
m
[
o
= 2m 0 0 O (3.5.9)
2m' O 0
Sym 2m 0
2m
-
&
- where
h
A
il c
‘=
m o Ao Lo
s
_ c am
- m o= [p” +p7 ] AL (3.5.10)
and L, is the initial element length. The matrix is converted from

et

local to global coordinates using standard transformation methods.,

3

3
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3.6 Foundation Element
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The foundation element is assumed to be oriented in global

coordinates and maybe represented schematically as shown in Figure

3.6.1. Its stiffness matrix may be written by inspection as

The damping may likewise be written as

(3.6.1)

(3.6.2)
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3.7 1load Discretization
Concentrated loads are applied directly to the nodes but dis-

tributed loads on elements due to gravity, buoyancy, current, and

waves must be transformed to equivalent loads applied at the

nodes. The nodal loads that are sought are those which, if applied

to the element at the nodes, would produce the same strain energy

in the element as the distribﬁted load would when the element nodal

B

degrees of freedom are fixed..
These fixed end forces may be derived using virtual displace-

ment principles. Using the general statement of the principle of

virtual displacements, (Section 3.3), one may express the relation

between strain energy and external work as

Jy $e; o) AV - [y 685 Py dV =0 (3.7.1)

where P; are the external loads and Ggi are the virtual'displace-

ments., If Equation (3.3.1) is now substituted into Equation

(3.7.1),

[y 8&4 Py 4V = 8q, Fy (3.7.2)

is obtained. Substitution of Equation (3.3.10) gives

fv (N, 8q,) P, dV = §q, F (3.7.3)

i
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Since qu is not a function of V and since it is an arbitrary non-

zero value, Equation 3.7.3 can be written

[y Ny Py &V = Fy (3.7.4)
For one-dimensional elements such as the cable and the beam, the
equation simplifies to

L
Jo N

t (-
ik Pi (xl) dx1 F (3.7.5)

k

This equation is then solved’either exactly or using the Rayleigh-
Ritz method for the reaction at the nodes, Fy. For beam and cable
elements exact sblutions are possible and the nodal forces are
recognized as the fixed end forces of elementary structural analy-
sis.

Since the orientations of the elements are varied and since
the hydrodynamic loads are calculated normal to the individual
element axes, all loads are calculated using local element coor-
dinates. The loads are summed after being transformed to the
global reference ffame.

Gravity loads are assumed uniform along the element length.
The total global gravity load is transformed into components tan-
gential to and normal to ;he element and the forces are distributed

to the nodes by the relationmns.
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¢ P
Fi =-—2 1= 1,3
c P? L
F5 = 5 i=2,3andj=1+3 (3.7.1)

where Pi is the total weight component in the xi direction. Since
both the cable and beam elements are straight, the torsional

load FG is zero. Likewise FG = FG

4 5 6 = 0 for the cable element since

it possesses no bending stiffness.

Buoyancy loads are assumed to act over elements with constant
cross-section and hence with uniform displaced volume. But, since
elements may pierce the surface, the buoyancy load is not nec-
essarily continuous over the entire length of the element. The
hydrodynamic loading may also be discontinuous for the same reason
plus the 1oading is generally not uniform over the submerged part
of the element. Since the buoyant 1oéd may be considered as a
special case of the more general hydrodynamic load, the two are
handled in the same manner.

In order to allow the use of reasonably large elements and to
produce an accurate load profile for arbitrarily defined combina-
tions of wave, curfent, and buoyancy, a load influenée function is
used to calculate the fixed and forces. If the reactions due to a
point load of unit magnitude on the element are known, the
reactions from any load distribution may be calculated as the sum
of the rea;tions due to a series of point loads whose magnitudes

are determined by the loading function. Figure 3.7-1 shows the
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basic element with a transverse load of intemsity, w (s). The

total fixed end forces due to the load may be shown to be

w,(s)
I L1
Fl = jo T (L-s) ds
a w,(s)
Pl b 3-3s%1+2s)ds 1=2,3
i o) L3

ot i,
£
~
n
N

Fl - b (s12 - 262 L+ das  i=2,383=1+3
3 o 3
¥ '
:
o
and (3.7.2)
w, (s)
J L1
Fy Jo—1— s ds
" - w.(s)
Ez Fq = fL = (3L 52 -2 s3) ds i=2,3
’ i o} 3
L
— .
- w,(s)
) Pl oo (P (%L - 8% as i=2,34&3 =143
3 o 2
L
.
- It is assumed that no torsional loads are applied between nodes
? s$0 FZ = Fi = 0 . Also for the cable elements, which have no rota-
.
tional degrees of freedom, F§ = Fg =0, j=1+ 3.
o
?j To permit the use of an arbitrary current profile and also to
- reduce computational effort, the hydrodynamic load intensities are
= calculated at a fixed number (20) of equally spaced elevations from
™ sea bottom to the still water line. Between each elevation load
N intensity is assumed to vary linearly. Figure 3.7-2 shows an
P
<
=
o
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element .arbitrarily oriented in the watef with the discretized load
profile imposed on it.

The fixed end forces are calculated by first interpolating to
find the load intensity at the submerged element end nodes and to
find the location with respect to node I of the remaining calcu-
lated load intensities. Then the fixed end forces due to each
trapezoidal load prism are calculatea. Using Equation (3.7.2) and

assuming a trapezoidal load prism, one can show that

N b
L= ] (Y Be 421362 oy 1 + 23 4 L 25 Oy K
i 3 2 A 5 a
k=1 L
N 2 b
Pl o 7 _%_[%L252+ZL;ZYLS3+Y—22LS4+%SS]|k
. 3 k=11 %k
and (3.7.3)
N b
Fi___z_%[YLS3_2Y;32Ls4_%ZSSI|k
k=1 L
N b
S __1_[:§_Ls3_Y—AZL84_%_ZSS]|ak
Ik 1 K

for i = 2,3 and j = i + 3. The constants Y and Z are given by

- - A
=y As ‘a
_ Aw
z =< (3.7.4)
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where v, is the load intensity at location ay, Aw is the change in
k
load intensity between aj and by, s, is the distance from the

origin to point a, and As is the distance between the known load

B

intensity points.

G
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4,0 Validation Problems and Results

The ‘computer program developed to implemeﬁt'the algorithms
presented in thg previous chapter was validated by a series of test
problems. The first seveﬁ problems were used to check individual
program segments and solution schemes. Known experimental or
analytic solutions are used as a basis for comparison. The
remaining two problems are of a more general nature and do not have
direct quantitative comparison to other work although they may be
compared qualitatively to other solutionms.

Problem 1 is a large deflection analysis of a cantilever beam
with a concentrated load at its tip. Problem 2 is a dynamic analy-
sis of a simple pendulum in which a beam element is used as the
pendulum arm. Problem 3 is a large deflection analysis of a taut
string with a transverse point load applied at midspan. Problem 4
is a large deflection analysis in which a concentrated mass is
supported by a taut string and alloﬁed to vibrate freely. In Prob-
lem 5 a steady hydrodynamic loading due to current is applied to a
model of an articulated tower and the angle of inclination of the
tower is calculated. Problem 6 is the steady state solution of a
cable with a spherical mass at its end towed at constant speed in
water. k

In Problem 7 the articulated tower is subjected to waves only
and then to waves in the ﬁresence of a cross current. For Problem
8, the dynamic responée of a two dimensional model of a guyed tower

is analyzed using two differing assumptions with respect to cable
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behavior: 1) with the hydrodynamic loads and the inertia loads of
the cable included in the analysis; and 2) with the cables acting
in a quasistatic manner as springs with load-deflection char-
acteristics identical to the static catenary cable. The last prob-
lem is a dynamic analysis of a tension leg structure. The analysis
is performed in two-dimensional space and the structure'is4sub-

jected to wave loads.

4.1 Problem l: Static Point load on a Cantilevér Beam

This problem demonstrates the acceptability 1) of the large—
deflection nonlinear analysis technique, 2) of the stiffness for-
mulation for the beam element, and 3) of the fundamental core of
equation solver and bookkeeping routines in the computer program.
A one element and a five element problem were comsidered. A load
of 95,413 N. was applied in six equal load steps and a convergence

tolerance of 0.0l was required. The beam has the following pro-

perties:
Elastic Modulus 2. x 10! pa
Cross—sectional Area " 1.456 n?
Second Moment of the Area . 3.58 o
Length 150 m

The nondimensionalizéd deflecﬁions ére plottéd in Figure 4,1-1.

The solid curve is a plot of the large deflection analytic solution
obtained by Frisch-Fay, 1962. The data in the figure show that the
element formulation and updated Lagrangian solution algorithm yield
excellent results for this problem even when a coarse, one-—element

discretization is chosen.
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.

4.2 Problem 2: Lumped Mass Pendulum

To demonstrate the accuracy of the dynamic algorithm adopted,

a2 simple pendulum was considered. A lumped mass with no rotational

Ek inertia was located at the end of a massless beam, displaced 10

- meters and released. Undamped motion was assumed. Convergence

vﬁ tolerance was 0.0l. The time step used was‘1.75 seconds. The

f} mechanical properties were:

- Beam:

:3 Elastic Modulus 2. x 1011 pa

“‘ Cross-Sectional Area 1.456 m®

E Second Moment of the Area | 3.580 m*

? ’ Length ; 150 m

: | Masé: X Magnitude : | o 1.718 x 105 kg
W \ X, Magnitude 1.718 x 105 kg
’ Xy Magnitude 1.718 x 10° kg

Figﬁre 4.2-1 shows the history of résponsé. The natural period

calculated analytically from the small amplitude pendulum solution
‘(Volterra and Zachmanoglou, 1965) is 24.58 sec. The period pre-

dicted numerically by the computer program is 24.88 sec. (1.2 7

™
oy
=

error). There is no perceptible decrease in amplitude in the two

complete cycles shown. The fact that the numerically calculated

£m

amplitude of motion of 9.84 meters is slightly less than the ini-

I

tial displacement of 10 meters (l.6 % error) is explained by the
self-starting feature of the Newmark algorithm. The initial condi-

tions used to start the algorithm were zero velocity and accelera-

~

e
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3

= tion: the load due to gravity is applied gradually during the

h‘ first time step with a consequent decrease in amplitude. The

) accuracy of the results could be improved by using a shorter time
‘; step or by decreasing the tolerance but the results obtained are
o quite satisfactory for their intended purpose.

i 4.3 Problem 3: Point Load on a Taut String

: The purpose of this problem was to check the algorithm for

€7 calculating the stiffness matrices for the cable elements. The

& model consisted of twb collinear cable elements with the following
i < properties:

Elastic Modulus 1 x 107 1b/£e2
T Initial Cross-sectional Area 0.1 ft2

- Initial Tension 50 1bs

# Weight Density 0.0 lb/ft3

" A transverse load located at midspan was applied in seven equal

- load steps. The maximum load was 7,000 1lbs, and convergence was
T assumed when the tolerance was less than or equal to 0.01.

Since the initial cable configuration possesses no transverse

™

stiffness, the viscous relaxation method was used to start the

® solution. The parameters used in the solution were:

{ﬁ Initial Artificial Damping Constant 2033 1b/ft
:} Damping Factor 0.001

. Decrément Factor o 0.0005

The results are shown in Figure 4.3-1. The continuous curve

is an analytic solution to the problem (Tuah, 1982). Convergence

o
(L2
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-
- to the first load step was reached in eight iterations. Conver-
g gence for the next two load steps required three iterations and the
B remaining four load steps required two iterations each, Webster,
-
; (1975) solved.this problem two ways: 1) with a purely incremental
- scheme using 100 load steps; and 2) with a modified Newton Raphson
;; scheme using 55 iterations. The viscous relaxation solution tech-
nique of this work provides a solufion that converges in a total of
22 iterations. The results as can be seen for the figure compare
7 very well with the analytic solution.

4.4 Problem 4: Point Mass on a Taut String

The purpose of this problem was to check the dynamic algorithm

H

; for cases involving cables. The cable is again stretched between
two points. Its mechanical properties are as described in Section

o

|

;J 4.3; but, instead of a concentrated load, a 5 slug concentrated

mass i1s placed at the midpoint. The mass was displaced 2 feet and

R |

released.

Figure 4.4-1 shows the nonlinear solution. For comparison, a

sine curve at the analytically calculated natural period of 0.262

g? seconds (see Volterra and Zachmanoglou, 1965 for procedure). The
E1 numerically calculated natural period is 0.263 seconds (0.4 7
@j error) at a time step of 0.0l seconds and a convergencé tolerance

of 0.01. Also shown are the results of the same problem with a
time step of 0.05 éeconds. In that instance the numericallf calcu-
1a§ed natural period is 0.321 seconds (22.5 7% error). This dem—
onstrates the period lengthening effect of the Newmark integration

scheme (Bathe, 1981).
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It is interesting to note that the natural period calculated
by a small-deflection analysis is 4.44 seconds. If the small-
deflection solution were used to estimate the time step to be used
for this particular problem and fifty time steps per cycle of the
estimated period were selected, there would be fewer than three
time steps occurring in each cycle of the true response. Thé error
in natural period would thus be even greater than that of the 0.05
second time period. If a time step of one—twentieth of that small-
deflection natural périod were selected, the analysis would com—
pletely miss the natural period of response and the analysis would
show a period of responsé which is totally in error. This simple
example demonstrates that for nonlinear problems it is highly
desirable to repeat an analysis at a different time step for a
length of time sufficient to determine that the original solution

is wvalid.

4.5 Problem 5: Steady Current on an Articulated Tower

In order to check the drag force calculation algorithm, a
simple articulated tower was modelled and subjected to steady cur-
rent. The result for steady leéﬁ of the tower was then compared tb
an analytic solution in which the tower was modelled as a rigid

body. The model selected was one after Kirk and Jain, 1977, and is

- shown in Figure 4.5-1 with geometric and dynamic particulars. The

mechanical properties of the shaft are identical to those of the
lumped-mass pendulum of Section 4.2. The drag coefficient used was

0.5 and the inertia coefficient was 2.0.
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A steady uniform curreﬁt of 0.9125 m/s was applied to the
tower and the steady angle of inclination was found to be 0.0205
radians. The angle of inclination calculated analytically is also
0.0205 radians. The convergence tolerance used by the program was
0.01.

Siﬁce the tower has no stiffness in the horizéntal directions
when in the vertical position, the viscous relaxation option was

used to start the solution. The following parameters were used:

Tnitial Artificial Damping Constant 3.9 x 107 ¥/m
Damping Factor 0.00001
Decrement Factor ’0.0005

Convergence was reached in five iterations. Figure 4.5-2 shows a

plot of the solution convergence.

4.6 Problem 6: Steady Tow of a Cable with Sphere

This problem demonstrates the accuracy of the calculation of
hydrodynamic drag forces on the cable element and confirms the
validity of neglecting tangential drag forces. The problem was
originally presented by Webster, 1974 and the experimental curve
was defermined by Gibbons and Waltoh, 1966. The structure consists
of a long wire terminated by a spherical mass. The wire and mass
are towed by a surface vessel at a steady speed of 10.5 knots. Thé

particulars of the ten element model are as follows:

Cable Data
Diameter 0.350 in
Submerged Weight 0.169 1b/ft
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Element Lengths ‘ 280.0 ft
’ Total Cable Length 280.0 ft
E * A Value 1,92 x 105 1b
Drag Coefficient 1,5

Spherical Body Data

Diameter 1.0 £t
Submerged Weight 580.9 1b
Drag Coefficient 0.23

The problem was started with the cable suspended vertically
and again viscous relaxation was used. The convergence tolerance
Qas 0.01, the initial artificial damping comstant was 6860 1b/ft,
and the damping and decrement parameters were 0.001 and 0.05
respectively. Convergence was reached in eleven iterations. The
final configuration at a speed of 10.5 knots is plotted in Figure
4L.6-1. Also shown are the results of Webster and the experimental
results of Gibbons and Walton. The present results compare
favorably with the experimental curve. The viscous relaxation
solution convergence in eleven iterations compares favorably to the
9] iterations to convergence required by the Webster solution in

which viscous relaxation was not used.

4,7 Problem 7: Articulated Téwer in Waves

To test the dynamic solution algorithm of the program with
hydrodynamic ioads acting on a structure, the articulated tower of
Section 4.5 was subjected to a 30-meter, l7-second wave. All para-

meters were as in Section 4.5 except the drag coefficient which was
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set to 1.0. The Newmark beta parameters o and r were set to 0.25

and 0.5, respectively. The time increment was 1.75 seconds and the
convergence tolerance was 0.01.

The response is shown in Figure 4.7-1. Also plotted in the
figure is the response obtained by Kirk and Jain, 1977, There is a
large difference in the form of the initial response although the
solutions appear to approach each other in the steady—-state. Kirk
and Jain indicate that they required no special starting procedure
in their solution, and that the solution was sufficiently damped to
give steady state response almost immediately. They used an
explicit, fourth-order two-point block integration method for
solving the equation of motion as opposed tp the implicit Newmark
method used in this work. It is not known what the precise reason
for the discrepancy is, but it is suspected to be in the difference
in the integration methods used. The question is which one better
represents the tower motion. Explicit methods are conditionally
stable; implicit methods are known to be unconditionally stable for
the linear problem (Bathe 1981).

To obtain an idea of the dynamic response of the tower, it was
leaned over to the maximum amplitude of excursion from the previous
problem and released. The convergence tolerance was again 0.01.
The dynamic response is shown in Figure 4.7-2. Since only a few
cycles were available for analysis, the log decrement was measured
for each half cycle and the effective damping parameter was calcu-

lated. The results are tabulated below.
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Half Cycle Damping Factor, &
. 1 . . -
2 0.17
3 0.09
4 , » 0.08
5 | 0.06

These results indicate a system that is not heavily damped as would
be implied by the results of Kirk and Jaiﬁ, 1977. The present’
results were determined, however, using the Newmark integration
scheme, so the results are not independent. When the forced
results are compared with the free oscillation results, the undula-

tion of the forced results fit well with the undulation of the free

‘oscillation results as would be expected leading one to believe

that the algorithm is functioning properly. Whether the block
integration or Newmark integration best describes the motion of a
real tower needs to be determined from laboratory data. That data
is not available for inclusion in this work.

The articulated tower was subjected to a 30 meter, 17 second
wave plus a 0,9125 m/s current moving at 90 degrees to the wave
direction to see if the program results are similar to Kirk and
Jain's 1977 results. A plot of the calculated x-y motion of the
tower top and the Kirk and Jain results are shown in Figure 4.7-
3. Again the initial amplitudés are large, but the motion of the
tower predicted by the present algorithm is otherwise very similar

to the results of Kirk and Jain.
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4,8 Problem 8: Two Dimensional Guyed Tower iﬁ Waves

A two dimensional model of a guyed tower was formulated to
demonstrate the use of beam, cable, and foundation elements in a
single proBlem and to demonstrate the ability to obtain solutions
in which.some of the elements are assumed to participate in a
quaéi—static manner. A definition sketch of the model is shown in
Figure 4.8-1. The tower was modelled as two beam elements, one
extending from the pinned base to the guy connection and one from
the point of guy connection to the deck mass. The two guys were
each modelled as three cable elements terminated at the seafloor by
a foundation spring whose horizontal stiffness was equivalent to
that of the 1ength of cable which usually extends from the clump
weight to the guy anchor. The physical properties of the model

used in the analysis are as follows

Environment
Water Depth 1500 ft
Wave Period 10 sec
Wave Height ‘ . 30 ft
Deck
Mass ' 466.4 k slugs
Rotational Inertia 0
Column
Mass Density ‘ | .00249 k slug/ft3
Weight Density ’ 0160 kip/ft3
Elastic Modulus 4.176 x 106 kip/£c?
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Cross~sectional Area

Second Moment of the Area
(about x! - x! and x!

2 2

Torsional Comnstant
Displaced Volume
Drag Width

Drag Coefficient

Inertia Coefficient

Mass Density
Weight Density

Elastic Modulus

‘Cross—sectional Area

Displaced Volume
Drag Width
Drag Coefficient

Inertia Coefficient

Initial Tension at Tower

Foundation Springs

Horizontal Stiffness

Vertical Stiffness

convergence tolerance of 0.01 was used.

111

. 62.8 ft2

1.571 x 10° £t

3.142 x 10% f£t4
312.5 ft3/ft
115.0 ft

0.7

1.814

.01524 k slugs/ft>
426 kip/ft3

.43 x 107 kip/£t?

3341 £t2
3341 ££3/ft
1.458 ft

0.7

2.0

1250 kip

957.7 kip/ft

1 x 1014 kip/et

For the solution in which quasi-static cables were assumed, the
mass density, drag coefficient and inertia coefficient of the
cables were set equal to zero so that the cables performed as

static catenary springs. The time step selected was 0.5 sec and a
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Plots of the horizontal displacement of the deck for both the
dynamic and the quasi-static solutions are shown in Figure 4.8-2.
The quasi-static solution is seen to overpredict the amplitude of
deck movement by 20 to 100 percent in the 45 seconds of data plot-
ted. These results imply that the deck accelerations are over-
predicted when the guys are modelled as springs.

In Figure 4.8-3 are plotted the guy tensions calculated at the
point of guy connection for the dynamic and the quasi-static cable
solutions. It is seen that the quasi-static cable solution over—
predicts the peak guyline tension and that the times at which peak
loadings occur are significantly different. The unusual shape of
the dynamic load trace is attributable to the spatial dependenge of

hydrodynamic loading on the guys.

4.9 Problem 9: Tension Leg Structure in Waves

A simplified tension-leg structure was subjected to waves as
an additional démoﬁstration of the versatility of the solution
techniques employed in this work. A surface piercing cylindrical
buoy was‘moored to the bottém by a single cable. A definition

sketch is shown in Figure 4.9-1. The particulars are as follows:

Environment
Water bepth 450 m
Wave Peried 15 sec
Wave Height 15 m
Column
Mass Density .2529 kg/m3
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Figure 4.9-~1 Tension leg structure
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Weight Density

Elastic Modulus

Cross—sectional Area

Second Moment of the Area

Torsional Constant

Displaced Volume

Drag Width

Drag Coefficient

Inertia Coefficient
Cables

Mass Density

Weight Density

Elastic Modulus

Cross—sectional Area

Displaced Volume

Drag Width

Drag Coefficient

Inertia Coefficient
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1.229 N/m3

2.1 x 108 N/m3
2.066 m’

75.55 m®

151.3 m*

223.8 wi/m
16.88 m

0.7

2.0

1.023 kg/m>
10.03 N/m3

2.1 x 108 N/m?
.397 m?

.397 m3/m
1.422 m

.7

2.0

Viscous relaxation was used to obtain the inertial equilibrium

position of the structure. The parameters used were:

Initial Artificial Damping Constant

Damping Factor

Decrement Factor

596139 nt/m/sec

1.0

0.05

The time step selected was 0.5 sec. and the convergence tolerance

was 0.01.
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The horizontal displacement of the cylinder top and bottom are

plotted versus time in Figure 4.9-2. One can observe the pitch

B

response of the cylinder as well as the long period response in the

s |

surge mode. The bottom of the cylinder, being restrained by the

tether, shows a more attenuated response at the wave frequency than

LR |

the top of the cylinder shows. The response appears stable and

B

appears to be approaching steady state at the conclusion of the

| S
Ey

time record.
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5.0 Summary and Recommendations

A'three—dimensional, large~deflection finite element program
has been developed which is capable of sgimulating the static and
dynémic behavior 6f large éompliant ocean structﬁres. The struc-
tures are assumed to be in the Morison regime and to be composed of
cable and beam—column elements. No vortex shedding, diffraction
effects, nor material nonlinearities are considered. Linear wave
theory is used and multidirectional irregular seas may be simulated

by a series of regulér waves., Current may be included as an arbi-

trary current profile varying in magnitude and direction with

depth. Concentrated masses and loads as well as foundation proper-
ties may also be modelled.

The use of updated Lagrangian coordinates and a residual feed-
back solution écheme has been shown to bé a §alid'technique for
solving the geometrically nonlinear problem. Static test problems
1 and 3 indicate that the scheme yields excellent results in com-
parison to available theoretical solutions. Furthermore, these
results were obtained with liberal convergence tolerances and large
element discretizationms.

It has been confirmed that the vis;ous relaxation method is an
excellenf method to start the static sblution’of hardening non-
linear problems with little or no initial stiffness in one or more
degrees of freedom. It has been demonstrated that the method is
particularly efficient when used on articulated structures which

use buoyancy for stability. More iterations are required when the
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method is used on cable pfobleﬁs énd dn problems using both caﬁles
and beams, but the technique is still superior to dynamic relaxa—
tion (Webster, 1980) for the examples considered in this work.

The selection of the coefficients used in the relaxation pro-
cess depends largely upon the experience of the analyst. However,
some observations can be made to determine if the selected coef—’
ficients are adequate and if they can be improved. If insufficient
initial stiffness is added to the nodes, the structure remains
unstable and this instability will be exhibited in the first itera-
tion by a zero or negative pivot during Gauss reduction of the set
of equilibrium equations. If the decrement factor is too small, a
similar situation will occur during subsequent iteration.
Conversely, if the decrement faétor is large and tﬁe initial stiff-
ness is large, the convergence plot will appear like the dynamic
free response of an overdamped system subject to a step load and
the solution will convergé monotonically to the proper values. An
optimum solution appears like the dynamic free response of an
underdamped system and exhibits some overshoot as ianigure 4.5-2,
but a heavily damped solution resulting from large initial arti-
ficial‘stiffness and a large decrement factor wili permit a solu-
tion to be obtained only at the expense of additionél iteration
cycles,

The iterative Newmark method has béen shbwn to provide good
time domain solutions to nonlinear dynamic problems even at time

steps and convergence tolerances which are large compared to those
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often suggested in the literature. The éolutién‘aigorithm has been
shown to give reasonable results for hydrodynamic solutions. How-
ever, although these results are similar to published results,
there is enough diéparity to warrant investigation of the perfor-
mance of this and other algorithms compared to experimental
results.,

The starting procedure of assuming zero initial velocity and
accelerafidn has béen shown to be an acceptable method for problems
in which the steady state dynamic response is sought. In fact, it
is actually a superior method for those problems in which some of
the response periods of the structure are much smaller than the
selected time step of the numerical integration. When an initial
acceleration vector is calculated for the system, the system
responds as it would respond to an impact load. If this response
has high accelerations at a period shorter than the time step, the
inertial loads overpower the other loads in the system and conver—‘
gence is hampered. When a solution is started from zero velocity
and atceleratioh, the net effect of the consﬁant average accelera-
tion schemekof Newmark is to apply the load as a ramp function over
one time step.' For the higher frequencies, the loading appears as
a static load and the high structure accelerations at high frequen-
cies are not present., The convergence of the iterative solution is
smoother and more rapid in this case.

Results of the guyed tower test problems show that for the

examples presented, the use of static spring models of the guys,
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the quasistatic cables, leads to an overprediction of the tower
motion and also of the guy tensions. There is also a large dif-
ference in the time phase of the cable tensions and in the form of
the tension versus time plots.

The tension leg structure problem demonstrates that the
algorithms developed in this work are cabable of handling tenéion—
leg structures and that the solution is stable over a long time
history.

In general the algorithms selected and used in this work per-
form in a manner which is satisfactory for their intended func-
tion. The techniques require a conéiderable amount of computer
time tq obtain solutions compared to the computer time usually
reqﬁired by lineaf analyses; As the nonlinearities increase in
strength, the computer time for similar problems increases greatly
but there is no apparent degradation in the accuracy of the resulté
for the test problems considered. Because of the relatively long
solution times, the analysis of this work is not recommended as a

tool for the detailed design of structures, Its best roles are

~probably as 1) an analytic tool used on simplified models to study

the motion characteristics of various structure concepts, 2) as a

verification tool for use on simplified models to’study the motion
characteristics of various concepts, 3) as a verification tool for
simplifiéd design techﬁiques, and 4) as a final design chéck‘bn

complicated models.
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The algorithms and methodologies developed in this work are

adeqﬁate to study a large variety of problems but there is still

additional work which will enhance the capabilities of the present

computer program. Following is a list of recommendations for

future additions or improvements:

D

2)

3)

4)

5)

6)

Include the effects of a finite free surface profile to
the buoyancy, wave, and current loads.

Add nonlinear elastic and viscoelastic material properties
to the cable element to better model synthetic hawser
materials.

Improve the cable element from a simple two node element
to a multinoded isoparametric element to allow the use of
larger elements and consequently decrease problem size.
Change the beam element to an isoparametric element to
eliminate the rigid body rotation problem in calculating
internal loads and to allow the use of’large curvéd beam
elements.

Implement a dynamic wind loading package so that the
effect on the structure of this dynamic loading combined
with hydrodynamic loading can be studied.

Iﬁplement a loading package which will permit the model-

ling of vortex shedding loads.

The list could be extended of course but these few modifications

appear to be of more immediate concern.
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B It is also desirable to execute a simple experimental study of
¥ a scale model to resolve the questions raised by comparing the

- dynamic solutions of the program developed in this work with the

;T dynamic solutions‘of the program developed by Kirk and Jain,

1977. A laboratory model test of an articulated tower would pro-

vide an independent check on the perfofmance of the dynamic

solution algorithm,
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